2012年5月17日木曜日

Inverse of A (matrix): Analytical Solution

\mathbf{A}^{-1}={1 \over \begin{vmatrix}\mathbf{A}\end{vmatrix}}\left(\mathbf{C}^{\mathrm{T}}\right)_{ij}={1 \over \begin{vmatrix}\mathbf{A}\end{vmatrix}}\left(\mathbf{C}_{ji}\right)={1 \over \begin{vmatrix}\mathbf{A}\end{vmatrix}}
\begin{pmatrix}
\mathbf{C}_{11} & \mathbf{C}_{21} & \cdots & \mathbf{C}_{n1} \\
\mathbf{C}_{12} & \mathbf{C}_{22} & \cdots & \mathbf{C}_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{C}_{1n} & \mathbf{C}_{2n} & \cdots & \mathbf{C}_{nn} \\
\end{pmatrix}

where C(i,j) is the cofactor of A(i,j) such that

C_{ij}=(-1)^{i+j} M_{ij} \,

M(i,j) is defined to be the determinant of the submatrix obtained by removing from A its i-th row and j-th column. For example,

 M_{23} = \begin{vmatrix}
b_{11} & b_{12} & \Box \\
\Box & \Box & \Box \\
b_{31} & b_{32} & \Box \\
\end{vmatrix}

yields

 M_{23} = \begin{vmatrix}
b_{11} & b_{12} \\
b_{31} & b_{32} \\
\end{vmatrix} = b_{11}b_{32} - b_{31}b_{12}

http://en.wikipedia.org/wiki/Cramer%27s_rule
http://en.wikipedia.org/wiki/Invertible_matrix#Methods_of_matrix_inversion
http://en.wikipedia.org/wiki/Matrix_of_cofactors

0 件のコメント:

コメントを投稿